關注“胡迪醫學”,了解更多世界醫學動態
胡迪主任參考世界頂級雜志《柳葉刀》
期刊社論,編譯了這篇推文,
讓大家了解腫瘤精準醫學20年的發展,
展望精準腫瘤學的發展前景。
腫瘤精準醫學的成果和挑戰
20年前《人類基因組計劃初稿》發表,
從此腫瘤精準醫學駛進了發展的快車道。
使用基因分型和基因組學,
已經成為一些癌癥標準治療的一部分,
這是腫瘤精準診療的偉大進步。
癌癥精準醫學已經給一部分病人
帶來了癌癥治愈,腫瘤分期減期,
明顯改善生命質量,
延長總體生存期等醫療結果,
這是生物學家和臨床醫學家們
共同努力,突破了部分癌癥難治的困境。
人們渴望、難以抗拒一種理想,
那就是能夠超越難以醫治的傳統界限,
實現更加精細,更加有效,
“以病人為中心”的診療模式。
癌癥精準醫學不是在路上,
而是已經來到我們的身邊。
腫瘤精準醫學的發展,
逐漸融合了大數據、蛋白組學、
轉錄組學、分子成像等領域技術。
盡管挑戰,但是科學家和醫學家們
依然在將這種理想轉化為
有意義的、公平的醫療服務。
他們需要時間去解決一系列的、
因為精準醫學而產生的新問題,
比如如何消除醫療成本的增加,
如何推廣、設計充足的臨床試驗,
如何更有效地收集、整理各種數據,
如何分析診療技術的醫療和經濟價值,
如何規范和監督精準醫學的應用、
如何解決帶來的公平和倫理相關的問題。
什么是精準醫學呢?
美國國家癌癥研究所(US NCI)
對精準醫學的定義是,
一種利用個人基因、蛋白質
和環境信息來預防、診斷和
治療疾病的醫學形式,但是,
利益相關者的定義大相徑庭。
靶向藥物治療臨床應用于
許多實體癌和血液癌癥,
放療和手術的精確方法也是如此。
然而,即使有更成熟的基因檢測,
轉化為臨床醫療遠遠落后于科學發現。
指南推薦的檢測經常未得到充分使用,
并且因地區、種族和收入不同,
實際應用也是有很大差異。
關注“胡迪醫學”,了解更多世界醫學動態
精準醫學面臨的挑戰有哪些?
精準醫學的許多進展
尚未進入臨床應用的原因,
主要是臨床對精準醫學的共同質疑。
大家共同持有的想法認為,
精準醫學目前處于轉化階段,
缺乏標準的結果來定義臨床益處。
此外,
許多大型臨床試驗缺乏足夠的比較對象,
而發展的快速度意味著許多試驗
在報告時往往已經過時了。
籃子、傘和其他自適應設計的引入
是有幫助的,但增加了復雜性。
幫助指導臨床醫生選擇測試和
應用臨床檢測結果時,
缺乏很好的決策支持工具。
難以提供足夠的IT基礎設施,
也可能妨礙臨床使用。
競爭激烈的市場和制藥公司的興奮點,
使人們更關注技術突破而不是衛生政策。
對精準醫療實施的研究不足,
導致宣傳與患者實際療效之間存在差距。
如何解決精準醫學的實施問題?
針對癌癥精準醫學帶來的光明前景,
目前已有幾個國家啟動了國家舉措。
2015年,美國發起了“All of Us”項目,
該項目遠遠超出了癌癥診療的范疇。
該項目旨在招募100多萬人,
從基因測序到醫療記錄,
收集使用10年以上數據。
澳大利亞基因組健康聯盟
是一個框架組織,
旨在改進基因組學在臨床的應用,
包括為臨床醫生提供
如何使用檢測結果的建議。
比利時、挪威、愛沙尼亞、法國和
以色列也制定了類似方案。
關注“胡迪醫學”,了解更多世界醫學動態
然而,這些項目中有許多試圖
協助實施基因組學,
在提供現有技術教育的同時,
可能難以整合最新的技術。
這些全國性的巨大努力
令人興奮,并吸引了人們的注意,
但風險是,在一些基礎研究實踐上,
科學家和臨床醫生之間缺乏外部合作和協議,
從而出現了多重努力,
阻礙了對患者的好處。
與許多新的醫療方法一樣,
高收入國家和低收入國家之間
在獲得新醫療方面存在不平等。
這種差距基于一種錯誤的信念,
即低收入和中等收入國家需要
花費太多資源,來實施這些新型的技術。
精準醫療代表著一系列層次的技術,
包括大數據和基因組測序。
巴西、中國和印度等國家
在這方面已經擁有很多經驗和能力。
利用基因檢測和大數據能夠
更有效地利用現有資源,
可以在低收入或中等收入地區
通過合理的投資和優先次序
獲得切實的成果,
但到目前為止,
這種情況還沒有發生。
一種更精確的藥物,
在減少不良事件的同時提高治療效果,
當然是我們希望達到的目標。
過去20年大家只是受到
先進科學概念上突破的影響,
但是,沒有對實施精準醫學
需要的基礎設施
和對病人醫療帶來的實效性,
給予足夠的關注。
精準腫瘤學將繼續提供科學進步,
但要為患者創造有意義的診療變化,
需要國際間的多種多樣的合作研究,
并為病人提供超越實驗室的整體治療方法。
癌癥診療體系建設遠遠超越了
癌癥治療的本身。
關注“胡迪醫學”,了解更多世界醫學動態
聲明:本文系健瑞寶醫療整理創作,如需轉載請取得許可,轉載時注明出處。本文屬醫療技術講座性質,不應被視為任何醫療建議或治療方案,如您需要,請咨詢執業醫師??d上述內容,“胡迪醫學”尊重信息出處的原意,對文中陳述、觀點和判斷保持中立,不對所包含內容的準確性、可靠性或完整性提供任何明示或暗示的保證。如果您認為文章內容或者來源標注與事實不符,請告訴我們,我們將與您積極協商解決。謝謝大家關注"胡迪醫學"。
文章中圖片和相關數據來自互聯網,圖片及資料版權歸原作者,如有異議,請及時和我們聯系,我們盡快協商解決。
引用柳葉刀期刊社論的來源:
EDITORIAL| VOLUME 397, ISSUE 10287, P1781, MAY 15, 2021
20 years of precision medicine in oncology
The Lancet
DOI:https://doi.org/10.1016/S0140-6736(21)01099-0
In the 20 years since the publication of the first draft of the human genome project, the use of genotyping and genomics have become part of standard treatment for some cancers. The desire to go beyond blanket, and often difficult, treatments for patients to a more refined, efficient, and patient-centred approach is an ideal that is hard to oppose. But as precision medicine in oncology expands to include big data, proteomics, transcriptomics, molecular imaging, and more, there are serious challenges ahead to translate that ideal into meaningful and equitable health care for patients. Issues surrounding rising costs, adequate clinical trial design and data, regulation, defining meaningful benefits to patients, and equity remain to be solved.
The US National Cancer Institute's definition of precision medicine is “a form of medicine that uses information about a person's genes, proteins and environment to prevent, diagnose and treat disease”, although stakeholders' definitions vary widely. Targeted drug therapy is in clinical use for many solid and haematological cancers, as are precision approaches to radiotherapy and surgery. However, even for more established genetic tests, translation into clinical care has lagged behind scientific discovery. Guideline-recommended testing is often underused and varies by region, race, and income.
Many advances in precision medicine have not made it into the clinic because of common challenges to the field. For ideas currently in the translational phase, there is a lack of standard outcomes to define clinical benefit. In addition, many large clinical trials lack adequate comparators and the pace of development means many are often out of date by the time they report. The introduction of basket, umbrella, and other adaptive designs are helpful but add complexity. A lack of decision support tools to help guide clinicians with the choice of tests and application of results, and difficulty with providing sufficient IT infrastructure, may also hamper clinical use. A highly competitive market and excitement from pharmaceutical companies puts a focus on technological breakthrough rather than health policy. Insufficient research into the implementation of precision medicine has resulted in a gap between the hype and the material gains in outcomes for patients.
Several national initiatives to deliver on the promise of precision medicine in oncology exist. In 2015, the USA initiated the All of Us project, which goes far beyond cancer care. This project is designed to enrol more than a million people and use data over 10 years, from genetic sequencing to health-care records. The Australian Genomics Health Alliance is a framework that aims to improve the translation of genomics into the clinic, including advice for clinicians on how to use results. Programmes are also in place in Belgium, Norway, Estonia, France, and Israel. However, many of these programmes try to assist with implementing genomics and might have difficulty incorporating newer technologies while providing education on established techniques. These vast national efforts are exciting and attract attention, but there is a risk that insufficient external collaboration and agreement among scientists and clinicians on some of the basic research practices replicates efforts and hinders the benefits to patients.
As with many new medical treatments, there is inequity in access between high-income and low-income countries. The determinism that is relied on to justify this disparity, based on a belief that some newer forms of technology require too many resources for low-income and middle-income countries (LMICs) to implement, is a fallacy. Precision medicine represents a hierarchy of technologies, including big data and genomic sequencing, which many LMICs—eg, Brazil, China, and India—already have experience in and capacity for. Use of genetic testing and big data to more efficiently use existing resources could see tangible results in these regions with reasonable investment and prioritisation. But thus far, this has not occurred.
A more precise medicine, which minimises adverse events while enhancing therapeutic impact, is of course the desired goal. But the past 20 years have been coloured by advanced scientific conceptual breakthroughs without adequate focus on the basic building blocks of implementation and the practicalities of patient care. Precision oncology will continue to deliver scientific advances, but to create meaningful changes for patients, international collaborative research and a holistic approach to the patient that goes beyond the lab are required. Cancer care is much more than cancer treatment.